Forbearance vs. Interest Rates: Experimental Tests of Liquidity and Strategic Default Triggers

By Deniz Aydin

Sasha Indarte
Wharton, UPenn
WFA
June 2023

Motivation

- Household debt relief played a central role in policy responses to crises
- Home Affordable Modification Program $\Rightarrow \$ 4.6$ billion spent to restructure mortgages in the Great Recession (Ganong and Noel, 2020)
- $\$ 1.4$ trillion worth of US mortgages and $\$ 655$ billion worth of student loans entered forbearance via CARES Act during COVID Recession (Cherry et al., 2021, Kim et al., 2022)
- Ongoing: US policy debates over student loan forgiveness and overhauling consumer bankruptcy
- This paper: what causes consumer default and what forms of debt relief best prevent default?

Approach Overview

- Author partnered with a bank in Turkey to randomize parameters of a debt relief tool
- Population: delinquent, unsecured borrowers (~personal loans)
- Debt relief tool: bank offers borrowers option to refinance
- Experiment varied three debt relief parameters:
- Rate reduction size: small or large rate reduction offered
- Term extension: small or large maturity extension
- Forbearance: option to postpone principal payments for 3 months
- Rate reduction lowers both current and future payments
- Term extension and forb. lower current payments but raise future payments

Results Overview

- Default falls with payments for rate reductions and forbearance
- But response to term extensions is more muted

Results Overview

- Default falls with payments for rate reductions and forbearance
- But response to term extensions is more muted
- Interpretation: these patterns are at odds with liquidity being the sole trigger of default; strategic incentives matter
- Concludes from analysis of responses to current vs future payment that strategic behavior explains most of the default response

Comment 1: Reconciling results in the literature

Can the paper help us understand differences in results?

- Default is mostly due to liquidity, not strategic motives
- Mortgages: Scharlemann Shore (2016), Gerardi et al. (2017), Ganong Noel $(2020,2023)$
- Consumer bankruptcy: Indarte (2023)
- Default is mostly due to strategic, not liquidity motives
- Credit cards: Dobbie and Song (2020)
- Unsecured personal loans: Aydin (2023)?
- What is it about these various settings that lead to different conclusions?
- Population? Paper finds strategic motives relatively weaker for fin. weaker consumers
- Moralizing language (Bursztyn et al., 2019), anticipated reciprocity (Fiorin et al., 2023), and collateral ?
- Additional dimensions to explore in data? Variation in recourse? Social norms?

Comment 2: Interpretation of results-do future payments affect default more than current ones?

Measure of strategic response reflects large strategic incentives

The experiment allows for a decomposition of the share of the behavioral response to interest rates that is attributable to a strategic effect (as opposed to a liquidity effect):

$$
\frac{\Delta Y}{\Delta R}=\underbrace{\frac{\Delta Y}{\Delta P a y}}_{\hat{\phi=1.11}} \underbrace{\frac{\Delta P a y}{\Delta R}}_{\text {Liquidity } \approx \frac{1}{3}}+\underbrace{\frac{\Delta Y}{\Delta P V_{0}}}_{\text {Strategic } \approx \frac{2}{3}} \underbrace{\frac{\Delta P}{\Delta P}}_{\hat{\psi}=0.33} \underbrace{\frac{\Delta P V^{f u}}{\Delta R}}_{6.28 \% F V_{0}}
$$

where 1.11 and 0.33 are estimates of the sensitivity of behavior to current and future payments, ϕ and ψ, respectively and 96 cents and $\$ 6.28$ per $\$ 100$ of principal are the corresponding first stage effect of interest rate reductions.

Measure of strategic response reflects large strategic incentives

The experiment allows for a decomposition of the share of the behavioral response to interest rates that is attributable to a strategic effect (as opposed to a liquidity effect):

$$
\frac{\Delta Y}{\Delta R}=\underbrace{\frac{\Delta Y}{\Delta P a y}}_{\hat{\phi=1.11}} \underbrace{\frac{\Delta P a y}{\Delta R}}_{\text {Liquidity } \approx \frac{1}{3}}+\underbrace{\frac{\Delta Y}{\Delta P V_{0}}}_{\text {Strategic } \approx \frac{2}{3}} \underbrace{\frac{\Delta P}{\Delta P}}_{\hat{\psi}=0.33} \underbrace{\frac{\Delta P V^{f u}}{\Delta R}}_{6.28 \% F V_{0}}
$$

where 1.11 and 0.33 are estimates of the sensitivity of behavior to current and future payments, ϕ and ψ, respectively and 96 cents and $\$ 6.28$ per $\$ 100$ of principal are the corresponding first stage effect of interest rate reductions.

- 6.28% FV isn't a behavioral response, it's a parameter of the debt relief policy
- $2 / 3$ reflects both the response to strategic incentives and the size of the incentive
- For NPV-equivalent changes to present and future payments, response to current payment ("liquidity") is about $3-4 x$ stronger (1.11 vs 0.33)

Comment 3: To IV or Not IV?

LATE with binary vs. continuous treatment

- Second stage: $Y_{i}=X_{i} \beta_{i}+\varepsilon_{i}$. First stage: $X_{i}=Z_{i} \pi_{i}+\eta_{i}$
- Binary treatment $\left(X_{i} \in\{0,1\}\right)$:

$$
\beta^{\angle A T E}=\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{E\left[X_{i} \mid Z_{i}=1\right]-E\left[X_{i} \mid Z_{i}=0\right]}=E\left[\beta_{i} \mid \pi_{i}>0\right]
$$

- Compliers are those with $\pi_{i} \neq 0$ ("the instrument affects their treatment status")

LATE with binary vs. continuous treatment

- Second stage: $Y_{i}=X_{i} \beta_{i}+\varepsilon_{i}$. First stage: $X_{i}=Z_{i} \pi_{i}+\eta_{i}$
- Binary treatment $\left(X_{i} \in\{0,1\}\right)$:

$$
\beta^{\angle A T E}=\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{E\left[X_{i} \mid Z_{i}=1\right]-E\left[X_{i} \mid Z_{i}=0\right]}=E\left[\beta_{i} \mid \pi_{i}>0\right]
$$

- Compliers are those with $\pi_{i} \neq 0$ ("the instrument affects their treatment status")
- Continuous treatment $\left(X_{i} \in \mathbb{R}\right)$:

$$
\beta^{\text {LATE }}=\frac{E\left[Z_{i} X_{i} \beta_{i}\right]}{E\left[Z_{i}^{2} \pi_{i}\right]}=\frac{E\left[\pi_{i} \beta_{i}\right]}{E\left[\pi_{i}\right]}
$$

- Continuous treatment \Rightarrow LATE upweights obs with a relatively stronger first stage

Whose LATE is identified here?

- Treatment (payment size) is continuous (does not matter that IV is binary)

Whose LATE is identified here?

- Treatment (payment size) is continuous (does not matter that IV is binary)
- Rate reduction IV:
- Interest rate reduction is subject to a lower bound (> inflation)
- Lower bound is less binding for people with higher initial interest rates
- LATE upweights more default-prone population \Rightarrow overstate default response

Whose LATE is identified here?

- Treatment (payment size) is continuous (does not matter that IV is binary)
- Rate reduction IV:
- Interest rate reduction is subject to a lower bound (> inflation)
- Lower bound is less binding for people with higher initial interest rates
- LATE upweights more default-prone population \Rightarrow overstate default response
- Term extension IV:
- Treatment randomly "nudges" people to select a proportionally higher new maturity
- Term increase is bigger for longer-maturity loans (lower-risk?)
- LATE upweights less default-prone population \Rightarrow understate default response

Whose LATE is identified here?

- Treatment (payment size) is continuous (does not matter that IV is binary)
- Rate reduction IV:
- Interest rate reduction is subject to a lower bound (> inflation)
- Lower bound is less binding for people with higher initial interest rates
- LATE upweights more default-prone population \Rightarrow overstate default response
- Term extension IV:
- Treatment randomly "nudges" people to select a proportionally higher new maturity
- Term increase is bigger for longer-maturity loans (lower-risk?)
- LATE upweights less default-prone population \Rightarrow understate default response
- Bias for forbearance? What about multi-instrument TSLS? Suggestions:
- See how treatment intensity varies with groups that differ in first-stage strength
- Estimate "reduced-form" within groups and scale effect by average treatment intensity

Comment 4: What is strategic default?

What is strategic default?

- Paper: "A default is strategic if an able borrower won't pay"
- Many papers adopt similar definitions...but what does "able" mean in practice?
- No liquid assets? Liquidation costs > wealth? No kidneys left to sell?
- Economically, what is a meaningful line to draw? Why delineate default causes?
- And how does "inability" relate to current vs future payments? Paper's take: reaction to current payments $=$ liquidity, reaction to future payments $=$ strategic

What is strategic default?

- Paper: "A default is strategic if an able borrower won't pay"
- Many papers adopt similar definitions...but what does "able" mean in practice?
- No liquid assets? Liquidation costs > wealth? No kidneys left to sell?
- Economically, what is a meaningful line to draw? Why delineate default causes?
- And how does "inability" relate to current vs future payments? Paper's take: reaction to current payments = liquidity, reaction to future payments = strategic
- Indarte (2023) focuses on moral hazard (strategic) and liquidity motives , i.e. the default responses to (1) the wealth gain from default vs (2) cash-on-hand
- Economic justification: relative strength of these motives is informative about the costs and insurance value of debt relief

Separating moral hazard (strategic) and liquidity effects

- The default response to debt payment sizes reflects both moral hazard and liquidity effects (Indarte, 2023). Consider a default indifference condition:

$$
\begin{aligned}
V_{t}^{\text {def }} & =V_{t}^{\text {repay }}\left(y_{t}, d_{t}\right) \\
u\left(a_{t}+e_{t}\right)-\sigma+\mathbb{E}^{\text {def }}\left(V_{t+1}\right) & =\max _{d_{t+1}} u\left(a_{t}+y_{t}^{\star}-R_{t} d_{t}+d_{t+1}\right)+\mathbb{E}^{\text {repay }}\left(V_{t+1}\right)
\end{aligned}
$$

Separating moral hazard (strategic) and liquidity effects

- The default response to debt payment sizes reflects both moral hazard and liquidity effects (Indarte, 2023). Consider a default indifference condition:

$$
\begin{aligned}
V_{t}^{\text {def }} & =V_{t}^{\text {repay }}\left(y_{t}, d_{t}\right) \\
u\left(a_{t}+e_{t}\right)-\sigma+\mathbb{E}^{\text {def }}\left(V_{t+1}\right) & =\max _{d_{t+1}} u\left(a_{t}+y_{t}^{\star}-R_{t} d_{t}+d_{t+1}\right)+\mathbb{E}^{\text {repay }}\left(V_{t+1}\right)
\end{aligned}
$$

- Changes in e_{t} affect filing through the moral hazard effect

Separating moral hazard (strategic) and liquidity effects

- The default response to debt payment sizes reflects both moral hazard and liquidity effects (Indarte, 2023). Consider a default indifference condition:

$$
\begin{aligned}
V_{t}^{\text {def }} & =V_{t}^{\text {repay }}\left(y_{t}, d_{t}\right) \\
u\left(a_{t}+e_{t}\right)-\sigma+\mathbb{E}^{\text {def }}\left(V_{t+1}\right) & =\max _{d_{t+1}} u\left(a_{t}+y_{t}^{\star}-R_{t} d_{t}+d_{t+1}\right)+\mathbb{E}^{\text {repay }}\left(V_{t+1}\right)
\end{aligned}
$$

- Changes in e_{t} affect filing through the moral hazard effect
- Changes in a_{t} affect filing through the liquidity effect

Separating moral hazard (strategic) and liquidity effects

- The default response to debt payment sizes reflects both moral hazard and liquidity effects (Indarte, 2023). Consider a default indifference condition:

$$
\begin{aligned}
V_{t}^{\text {def }} & =V_{t}^{\text {repay }}\left(y_{t}, d_{t}\right) \\
u\left(a_{t}+e_{t}\right)-\sigma+\mathbb{E}^{\text {def }}\left(V_{t+1}\right) & =\max _{d_{t+1}} u\left(a_{t}+y_{t}^{\star}-R_{t} d_{t}+d_{t+1}\right)+\mathbb{E}^{\text {repay }}\left(V_{t+1}\right)
\end{aligned}
$$

- Changes in e_{t} affect filing through the moral hazard effect
- Changes in a_{t} affect filing through the liquidity effect
- Changes in debt payments $R_{t} d_{t}$ affect filing through both motives

Separating moral hazard (strategic) and liquidity effects

- The default response to debt payment sizes reflects both moral hazard and liquidity effects (Indarte, 2023). Consider a default indifference condition:

$$
\begin{aligned}
V_{t}^{\text {def }} & =V_{t}^{\text {repay }}\left(y_{t}, d_{t}\right) \\
u\left(a_{t}+e_{t}\right)-\sigma+\mathbb{E}^{\text {def }}\left(V_{t+1}\right) & =\max _{d_{t+1}} u\left(a_{t}+y_{t}^{\star}-R_{t} d_{t}+d_{t+1}\right)+\mathbb{E}^{\text {repay }}\left(V_{t+1}\right)
\end{aligned}
$$

- Changes in e_{t} affect filing through the moral hazard effect
- Changes in a_{t} affect filing through the liquidity effect
- Changes in debt payments $R_{t} d_{t}$ affect filing through both motives
- If we take the response to future payments = strategic motive, we can subtract it from the response to current payments to get the liquidity effect:
- Liquidity $2.36 x\left(=\frac{1.11-0.33}{0.33}\right)$ stronger than strategic (I find about $4 x$ for US bankruptcy)

Conclusion

In conclusion...

- Very interesting paper!
- New evidence from a rich RCT on an important policy question
- Sheds light on how to best design debt relief
- Would also be valuable to interact debt relief treatments and examine the extent to which they are complements vs substitutes!

Thanks!

